Skip to main content

Apache Airflow: Workflow Orchestration Mastery

Module Level: Foundation Prerequisites: Python basics, understanding of data pipelines Duration: 2-3 hours Key Concepts: Workflow orchestration, DAGs, Airflow architecture, use cases

What is Apache Airflow?

Apache Airflow is an open-source workflow orchestration platform for programmatically authoring, scheduling, and monitoring complex data pipelines. Created by Airbnb in 2014 and donated to Apache Software Foundation in 2016, Airflow has become the industry standard for data pipeline orchestration.
Core Philosophy: “Workflows as Code” - Define pipelines programmatically using Python, enabling version control, testing, and dynamic generation.

The Problem Airflow Solves

Before Airflow, data teams faced several challenges:
The Challenge: Managing task dependencies in ETL pipelines.Example: A reporting pipeline needs to:
  1. Extract data from 3 different databases
  2. Wait for all extractions to complete
  3. Transform and merge the data
  4. Load to data warehouse
  5. Generate reports
  6. Send email notifications
Without Airflow: Cron jobs with sleep statements, brittle shell scripts, manual coordination.With Airflow: Declarative dependency management through DAGs (Directed Acyclic Graphs).
The Challenge: No centralized view of pipeline status, failures, or execution history.Without Airflow: Scattered logs, manual monitoring, discovering failures hours later.With Airflow: Rich web UI showing real-time status, execution history, logs, and metrics.
The Challenge: Networks fail, APIs timeout, databases become unavailable.Without Airflow: Custom retry logic in every script, inconsistent behavior.With Airflow: Built-in retry mechanisms, exponential backoff, alerting on failures.
The Challenge: Running pipelines at scale across distributed infrastructure.Without Airflow: Resource contention, manual parallelization, cluster management complexity.With Airflow: Multiple executor options (Celery, Kubernetes) for distributed execution.

Workflow Orchestration vs ETL Tools

Understanding the distinction is crucial for choosing the right tool.

Workflow Orchestrator (Airflow)

# Airflow: Orchestrates WHERE and WHEN tasks run, not HOW they process data

from airflow import DAG
from airflow.operators.bash import BashOperator
from airflow.providers.apache.spark.operators.spark_submit import SparkSubmitOperator
from airflow.providers.google.cloud.operators.bigquery import BigQueryInsertJobOperator
from datetime import datetime

with DAG(
    'etl_orchestration',
    start_date=datetime(2024, 1, 1),
    schedule='@daily',
    catchup=False
) as dag:

    # Airflow orchestrates external tools
    extract_postgres = BashOperator(
        task_id='extract_from_postgres',
        bash_command='python /scripts/extract_postgres.py'
    )

    # Spark does the heavy transformation
    transform_spark = SparkSubmitOperator(
        task_id='transform_data',
        application='/spark_jobs/transform.py',
        conn_id='spark_cluster'
    )

    # BigQuery loads the data
    load_bigquery = BigQueryInsertJobOperator(
        task_id='load_to_bigquery',
        configuration={
            'load': {
                'sourceUris': ['gs://bucket/transformed/*'],
                'destinationTable': {'projectId': 'my-project', 'datasetId': 'analytics', 'tableId': 'sales'}
            }
        }
    )

    extract_postgres >> transform_spark >> load_bigquery
Airflow’s Role:
  • Schedule when jobs run
  • Manage dependencies between tasks
  • Handle failures and retries
  • Monitor execution
  • Coordinate multiple tools (Spark, dbt, SQL databases, APIs)

ETL Tool (Talend, Informatica, SSIS)

# ETL Tools: Define HOW data is transformed (visual or code)
# They are the WORKERS, not the ORCHESTRATOR

# Example: Talend Job (conceptual)
# 1. GUI-based job design
# 2. Drag-and-drop components
# 3. Built-in transformations
# 4. Usually handles: Extract → Transform → Load in one tool

# Limitations:
# - Often proprietary and expensive
# - Limited scheduling capabilities
# - Harder to version control (XML-based)
# - Less flexible for complex workflows

Comparison Matrix

Airflow (Orchestrator)

Strengths:
  • Complex workflow coordination
  • Multi-tool integration
  • Programmatic (Python)
  • Open source, extensible
  • Strong community
Weaknesses:
  • Doesn’t transform data itself
  • Steeper learning curve
  • Requires infrastructure

ETL Tools (Workers)

Strengths:
  • Built-in transformations
  • Visual development
  • Pre-built connectors
  • Integrated metadata
Weaknesses:
  • Often expensive
  • Vendor lock-in
  • Limited orchestration
  • Hard to test/version

Modern Stack

Best Practice:
  • Airflow for orchestration
  • dbt for SQL transformations
  • Spark for big data
  • Python for custom logic
  • Cloud services (S3, BigQuery)
Result: Best tool for each job

Airflow Architecture Overview

Understanding Airflow’s architecture is crucial for production deployments.

Core Components

1

Web Server

Purpose: Provides the user interface for monitoring and managing workflows.Responsibilities:
  • Render DAG structures
  • Display task execution status
  • Show logs and task duration
  • Trigger manual DAG runs
  • Manage connections and variables
Technology: Flask-based web applicationNote: The web server only reads from the metadata database, it doesn’t schedule tasks.
2

Scheduler

Purpose: The brain of Airflow - determines what tasks need to run and when.Responsibilities:
  • Parse DAG files to discover tasks
  • Determine task dependencies
  • Check if tasks are ready to run (dependencies satisfied, schedule met)
  • Submit tasks to the executor
  • Handle task retries and failures
How it works:
# Simplified scheduler logic
while True:
    # 1. Parse DAG files
    dags = parse_dag_directory()

    # 2. Create DAG runs for schedules
    for dag in dags:
        if should_create_dag_run(dag):
            create_dag_run(dag)

    # 3. Schedule tasks that are ready
    for dag_run in active_dag_runs:
        for task in dag_run.get_runnable_tasks():
            executor.queue_task(task)

    # 4. Handle task state changes
    process_executor_events()

    sleep(scheduler_interval)  # Default: 5 seconds
Critical: Only ONE scheduler should be active (multi-scheduler support in Airflow 2.0+).
3

Executor

Purpose: Defines HOW and WHERE tasks actually run.Types:
  1. SequentialExecutor (Default, Development Only)
    • Runs one task at a time
    • SQLite compatible
    • NOT for production
  2. LocalExecutor (Single Machine)
    • Runs tasks in parallel on same machine
    • Requires PostgreSQL/MySQL
    • Good for small-medium workloads
  3. CeleryExecutor (Distributed)
    • Runs tasks across multiple worker machines
    • Requires message broker (Redis/RabbitMQ)
    • Horizontal scalability
  4. KubernetesExecutor (Cloud Native)
    • Spawns a Kubernetes pod per task
    • Dynamic scaling
    • Resource isolation
We’ll deep dive into executors in Module 7.
4

Metadata Database

Purpose: Single source of truth for all Airflow state.Stores:
  • DAG definitions and schedules
  • Task instances and their states
  • Task execution history
  • Variables, connections, and configuration
  • User permissions and roles
Supported Databases:
  • PostgreSQL (recommended)
  • MySQL
  • SQLite (dev only)
Schema Example:
-- Key tables in Airflow metadata DB

-- DAGs and their configuration
SELECT * FROM dag;

-- Individual DAG executions
SELECT * FROM dag_run
WHERE dag_id = 'my_pipeline'
ORDER BY execution_date DESC;

-- Task execution instances
SELECT task_id, state, start_date, end_date, duration
FROM task_instance
WHERE dag_id = 'my_pipeline'
  AND execution_date = '2024-01-15'
ORDER BY start_date;

-- Connection configurations (encrypted)
SELECT conn_id, conn_type, host, port
FROM connection;
5

Workers

Purpose: Processes that actually execute tasks.Behavior varies by executor:
  • LocalExecutor: Subprocesses on scheduler machine
  • CeleryExecutor: Separate machines running Celery workers
  • KubernetesExecutor: Kubernetes pods
Worker Process:
# What happens when a worker executes a task

# 1. Receive task from executor
task = get_task_from_queue()

# 2. Update task state to RUNNING
update_task_state(task, State.RUNNING)

# 3. Execute the task logic
try:
    result = task.execute(context)
    update_task_state(task, State.SUCCESS)
except Exception as e:
    if task.retries < task.max_retries:
        update_task_state(task, State.UP_FOR_RETRY)
    else:
        update_task_state(task, State.FAILED)
    log_error(e)

Execution Flow: DAG to Task Completion

# Detailed execution flow

"""
1. DAG FILE PARSING (Scheduler)
   - Scheduler scans dag_folder every min_file_process_interval
   - Parses Python files to discover DAG objects
   - Updates metadata DB with DAG structure
"""

# Example DAG file
from airflow import DAG
from airflow.operators.python import PythonOperator
from datetime import datetime

def extract():
    print("Extracting data...")

def transform():
    print("Transforming data...")

with DAG('etl_pipeline', start_date=datetime(2024, 1, 1), schedule='@daily') as dag:
    extract_task = PythonOperator(task_id='extract', python_callable=extract)
    transform_task = PythonOperator(task_id='transform', python_callable=transform)
    extract_task >> transform_task


"""
2. DAG RUN CREATION (Scheduler)
   - Scheduler checks if schedule interval has passed
   - Creates DagRun in metadata DB
   - DagRun represents one execution of the entire DAG
"""

# Scheduler logic (simplified)
if current_time >= (last_run_time + schedule_interval):
    dag_run = DagRun(
        dag_id='etl_pipeline',
        execution_date=logical_date,
        state=State.RUNNING
    )
    save_to_db(dag_run)


"""
3. TASK SCHEDULING (Scheduler)
   - For each DagRun, scheduler creates TaskInstances
   - Checks dependencies (upstream tasks completed?)
   - Queues tasks that are ready
"""

for task in dag.tasks:
    if all(upstream_task.state == State.SUCCESS for upstream_task in task.upstream_tasks):
        task_instance = TaskInstance(
            task=task,
            execution_date=dag_run.execution_date,
            state=State.QUEUED
        )
        executor.queue_task(task_instance)


"""
4. TASK EXECUTION (Executor → Worker)
   - Executor sends task to worker
   - Worker runs task logic
   - Updates task state in DB
"""

# Worker execution
task_instance.state = State.RUNNING
try:
    task_instance.task.execute(context={'execution_date': dag_run.execution_date})
    task_instance.state = State.SUCCESS
except Exception:
    task_instance.state = State.FAILED

"""
5. DAG RUN COMPLETION (Scheduler)
   - When all tasks complete, DagRun marked as SUCCESS or FAILED
   - Triggers cleanup, callbacks, and next schedule
"""

When to Use Airflow

Ideal Use Cases

Batch ETL/ELT Pipelines

Perfect FitDaily/hourly data ingestion from multiple sources to data warehouse.
with DAG('daily_etl', schedule='@daily') as dag:
    extract_salesforce = SalesforceToS3Operator(...)
    extract_postgres = PostgresToS3Operator(...)
    transform_dbt = BashOperator(bash_command='dbt run')
    load_snowflake = S3ToSnowflakeOperator(...)

    [extract_salesforce, extract_postgres] >> transform_dbt >> load_snowflake
Why Airflow?
  • Complex dependencies
  • Multiple data sources
  • Needs retry logic
  • Requires monitoring

Machine Learning Pipelines

Perfect FitScheduled model training, evaluation, and deployment.
with DAG('ml_pipeline', schedule='@weekly') as dag:
    fetch_new_data = PythonOperator(...)
    validate_data = GreatExpectationsOperator(...)
    train_model = BashOperator(bash_command='python train.py')
    evaluate_model = PythonOperator(...)
    deploy_model = KubernetesPodOperator(...)

    fetch_new_data >> validate_data >> train_model >> evaluate_model >> deploy_model
Why Airflow?
  • Schedule regular retraining
  • Data validation gates
  • A/B testing coordination
  • Model versioning

Data Quality Monitoring

Perfect FitScheduled data quality checks and alerting.
with DAG('data_quality', schedule='0 */4 * * *') as dag:  # Every 4 hours
    check_completeness = SQLCheckOperator(
        sql="SELECT COUNT(*) FROM orders WHERE date = {{ ds }}",
        pass_value=lambda count: count > 1000
    )
    check_duplicates = SQLValueCheckOperator(...)
    alert_on_failure = SlackWebhookOperator(...)

    [check_completeness, check_duplicates] >> alert_on_failure

Multi-System Orchestration

Perfect FitCoordinating tasks across different platforms.
with DAG('cross_platform', schedule='@daily') as dag:
    trigger_spark = SparkSubmitOperator(...)
    run_dbt = BashOperator(bash_command='dbt run')
    update_tableau = TableauRefreshWorkbookOperator(...)
    send_report = EmailOperator(...)

    trigger_spark >> run_dbt >> update_tableau >> send_report

When NOT to Use Airflow

Airflow is not always the right choice. Avoid using it for:
Problem: Airflow schedules tasks at intervals (seconds at minimum), not instant event reaction.Example Bad Use:
# BAD: Trying to use Airflow for real-time
with DAG('process_events', schedule_interval='@once') as dag:
    # This won't work for real-time!
    process_event = PythonOperator(...)
Use Instead:
  • Kafka + Flink: For true real-time stream processing
  • AWS Lambda: For event-driven serverless
  • Spark Streaming: For micro-batch processing
When Airflow Fits: Batch processing results from real-time systems
# GOOD: Hourly aggregation of Kafka topics
with DAG('aggregate_events', schedule='@hourly') as dag:
    aggregate_kafka = SparkSubmitOperator(
        application='aggregate_kafka_to_warehouse.py'
    )
Problem: Airflow adds complexity for simple scheduled scripts.Example Overkill:
# OVERKILL: Just run a backup script daily
with DAG('simple_backup', schedule='@daily') as dag:
    backup = BashOperator(bash_command='/scripts/backup.sh')
Use Instead: Regular cron job
# crontab
0 2 * * * /scripts/backup.sh
When Airflow Fits: When you need monitoring, retries, or task dependencies
# JUSTIFIED: Backup with validation and notification
with DAG('backup_pipeline', schedule='@daily') as dag:
    backup = BashOperator(bash_command='/scripts/backup.sh')
    validate = PythonOperator(python_callable=validate_backup)
    upload_offsite = S3UploadOperator(...)
    notify = SlackWebhookOperator(...)

    backup >> validate >> upload_offsite >> notify
Problem: Airflow tasks should complete, not run indefinitely.Example Bad Use:
# BAD: API server as Airflow task
def run_api_server():
    app = Flask(__name__)
    app.run(port=5000)  # Never returns!

with DAG('api_service') as dag:
    api = PythonOperator(python_callable=run_api_server)  # Will never finish
Use Instead:
  • Docker containers
  • Kubernetes deployments
  • Systemd services
When Airflow Fits: Deploying/updating those services
# GOOD: Deploy new API version
with DAG('deploy_api', schedule=None, catchup=False) as dag:
    build_image = DockerOperator(...)
    deploy_k8s = KubernetesPodOperator(...)
    health_check = HttpSensor(...)

    build_image >> deploy_k8s >> health_check
Problem: Airflow DAGs are meant to be acyclic; complex conditional flows get messy.Example Difficult in Airflow:
# DIFFICULT: Complex business logic with many conditions
with DAG('complex_workflow') as dag:
    check = BranchPythonOperator(python_callable=lambda: ...)
    path_a = PythonOperator(...)
    path_b = PythonOperator(...)
    path_c = PythonOperator(...)
    # 10 more branches...
    # Hard to visualize and maintain
Better Tool: Apache Beam, AWS Step FunctionsWhen Airflow Fits: Clear, predictable workflow with minimal branching

Airflow vs Alternatives

Feature Comparison

FeatureAirflowPrefectDagsterLuigiAWS Step Functions
Open Source✅ Yes✅ Yes (Hybrid)✅ Yes✅ Yes❌ Proprietary
LanguagePythonPythonPythonPythonJSON (States)
DAG DefinitionCodeCodeCodeCodeVisual/JSON
Dynamic DAGs✅ Excellent✅ Excellent✅ Excellent⚠️ Limited❌ No
UI Quality⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
Scalability⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
Learning CurveSteepModerateModerateEasyEasy
CommunityHugeGrowingGrowingModerateN/A
Managed ServiceAstronomer, MWAAPrefect CloudDagster+❌ NoBuilt-in AWS
Best ForGeneral ETLModern workflowsData platformsSimple pipelinesAWS-native

When to Choose Each

Choose Airflow If...

  • Established enterprise with existing Airflow
  • Need maximum flexibility and extensibility
  • Strong Python team
  • Want proven, battle-tested solution
  • Open source is critical
  • Rich provider ecosystem needed

Choose Prefect If...

  • Starting fresh (no legacy)
  • Want modern developer experience
  • Need dynamic workflows
  • Prefer cloud-native approach
  • Value better UI/UX
  • Negative engineering appeals to you

Choose Dagster If...

  • Building data platform
  • Heavy focus on data quality
  • Need strong typing and testing
  • Asset-oriented thinking
  • Want integrated data catalog

Choose AWS Step Functions If...

  • Fully on AWS
  • Serverless preferred
  • Simple workflows
  • Don’t want to manage infrastructure
  • Need AWS service integrations

Key Concepts: The Mental Model

DAG (Directed Acyclic Graph)

"""
DAG: A collection of tasks with defined dependencies

DIRECTED: Tasks have order (A → B → C)
ACYCLIC: No loops (can't go back to previous task)
GRAPH: Visual representation of workflow
"""

from airflow import DAG
from airflow.operators.python import PythonOperator
from datetime import datetime

# The DAG is the container
with DAG(
    dag_id='my_pipeline',           # Unique identifier
    start_date=datetime(2024, 1, 1), # When DAG becomes active
    schedule='@daily',               # How often to run
    catchup=False                    # Don't backfill historical runs
) as dag:

    # Tasks are the nodes
    task_a = PythonOperator(task_id='task_a', python_callable=lambda: print('A'))
    task_b = PythonOperator(task_id='task_b', python_callable=lambda: print('B'))
    task_c = PythonOperator(task_id='task_c', python_callable=lambda: print('C'))

    # Dependencies define the edges
    task_a >> task_b >> task_c  # A then B then C

    # Equivalent to:
    # task_a.set_downstream(task_b)
    # task_b.set_downstream(task_c)
Visualization:
    ┌─────────┐
    │ Task A  │ (Extract)
    └────┬────┘


    ┌─────────┐
    │ Task B  │ (Transform)
    └────┬────┘


    ┌─────────┐
    │ Task C  │ (Load)
    └─────────┘

Operators: The Building Blocks

"""
Operators define WHAT each task does
Airflow has 100+ built-in operators for different systems
"""

from airflow.operators.bash import BashOperator
from airflow.operators.python import PythonOperator
from airflow.providers.postgres.operators.postgres import PostgresOperator
from airflow.providers.http.operators.http import SimpleHttpOperator

with DAG('operator_examples', start_date=datetime(2024, 1, 1), schedule=None) as dag:

    # Execute shell commands
    bash_task = BashOperator(
        task_id='run_script',
        bash_command='python /scripts/process.py'
    )

    # Execute Python functions
    def process_data(**context):
        print(f"Processing for {context['ds']}")  # ds = execution date

    python_task = PythonOperator(
        task_id='process',
        python_callable=process_data
    )

    # Execute SQL queries
    sql_task = PostgresOperator(
        task_id='insert_data',
        postgres_conn_id='my_postgres',
        sql="INSERT INTO table VALUES (...)"
    )

    # Call HTTP APIs
    api_task = SimpleHttpOperator(
        task_id='call_api',
        http_conn_id='my_api',
        endpoint='/trigger',
        method='POST'
    )

Task Instance: Execution Record

"""
TaskInstance = Task + Execution Date
Records one execution of a task for a specific DAG run
"""

# Conceptual example
task_instance = TaskInstance(
    task=extract_task,
    execution_date=datetime(2024, 1, 15),
    state='running',  # queued, running, success, failed, up_for_retry
    start_date=datetime(2024, 1, 15, 2, 0, 0),
    end_date=None,
    duration=None,
    try_number=1,
    max_tries=3
)

# Query task instances
from airflow.models import TaskInstance as TI

# Get all failed task instances
failed_tasks = TI.query.filter(
    TI.state == 'failed',
    TI.execution_date >= datetime(2024, 1, 1)
).all()

Real-World Architecture Example

"""
Complete E-commerce Data Pipeline
Runs daily at 2 AM to process previous day's data
"""

from airflow import DAG
from airflow.operators.python import PythonOperator
from airflow.providers.postgres.operators.postgres import PostgresOperator
from airflow.providers.amazon.aws.transfers.s3_to_redshift import S3ToRedshiftOperator
from airflow.providers.slack.operators.slack_webhook import SlackWebhookOperator
from datetime import datetime, timedelta

default_args = {
    'owner': 'data-team',
    'depends_on_past': False,
    'email': ['[email protected]'],
    'email_on_failure': True,
    'email_on_retry': False,
    'retries': 2,
    'retry_delay': timedelta(minutes=5),
}

with DAG(
    'ecommerce_daily_pipeline',
    default_args=default_args,
    description='Daily ETL for e-commerce analytics',
    schedule='0 2 * * *',  # 2 AM daily
    start_date=datetime(2024, 1, 1),
    catchup=False,
    tags=['production', 'analytics', 'daily']
) as dag:

    # Extract from operational databases
    extract_orders = PostgresOperator(
        task_id='extract_orders',
        postgres_conn_id='prod_db',
        sql="""
            COPY (
                SELECT * FROM orders
                WHERE order_date = '{{ ds }}'  -- Templated execution date
            ) TO '/tmp/orders_{{ ds }}.csv' WITH CSV HEADER;
        """
    )

    extract_customers = PostgresOperator(
        task_id='extract_customers',
        postgres_conn_id='prod_db',
        sql="COPY (SELECT * FROM customers WHERE updated_at >= '{{ ds }}') TO '/tmp/customers_{{ ds }}.csv';"
    )

    # Upload to S3 (data lake)
    def upload_to_s3(**context):
        import boto3
        s3 = boto3.client('s3')
        ds = context['ds']
        s3.upload_file(f'/tmp/orders_{ds}.csv', 'data-lake', f'raw/orders/{ds}/orders.csv')
        s3.upload_file(f'/tmp/customers_{ds}.csv', 'data-lake', f'raw/customers/{ds}/customers.csv')

    upload = PythonOperator(
        task_id='upload_to_s3',
        python_callable=upload_to_s3
    )

    # Transform with dbt (running in separate container)
    transform = BashOperator(
        task_id='transform_dbt',
        bash_command='cd /dbt && dbt run --models tag:daily'
    )

    # Load to Redshift data warehouse
    load_orders = S3ToRedshiftOperator(
        task_id='load_orders_to_redshift',
        s3_bucket='data-lake',
        s3_key='transformed/orders/{{ ds }}/orders.parquet',
        redshift_conn_id='redshift',
        schema='analytics',
        table='fact_orders',
        copy_options=['PARQUET']
    )

    # Data quality checks
    def check_data_quality(**context):
        from airflow.providers.postgres.hooks.postgres import PostgresHook
        hook = PostgresHook(postgres_conn_id='redshift')

        # Check record count
        result = hook.get_first("SELECT COUNT(*) FROM analytics.fact_orders WHERE date = '{{ ds }}'")
        if result[0] < 100:
            raise ValueError(f"Only {result[0]} orders found - expected at least 100")

        # Check for nulls
        null_check = hook.get_first("SELECT COUNT(*) FROM analytics.fact_orders WHERE date = '{{ ds }}' AND customer_id IS NULL")
        if null_check[0] > 0:
            raise ValueError(f"Found {null_check[0]} orders with null customer_id")

    quality_check = PythonOperator(
        task_id='quality_check',
        python_callable=check_data_quality
    )

    # Notify on success
    notify_success = SlackWebhookOperator(
        task_id='notify_success',
        http_conn_id='slack_webhook',
        message=':white_check_mark: Daily pipeline completed for {{ ds }}',
        channel='#data-alerts'
    )

    # Define dependencies
    [extract_orders, extract_customers] >> upload >> transform >> load_orders >> quality_check >> notify_success
Pipeline Visualization:
┌──────────────────┐  ┌──────────────────┐
│ Extract Orders   │  │ Extract Customers│
└────────┬─────────┘  └────────┬─────────┘
         │                     │
         └──────────┬──────────┘

            ┌──────────────┐
            │ Upload to S3 │
            └──────┬───────┘

            ┌──────────────┐
            │ Transform dbt│
            └──────┬───────┘

         ┌─────────────────┐
         │ Load to Redshift│
         └────────┬────────┘

         ┌─────────────────┐
         │ Quality Check   │
         └────────┬────────┘

         ┌─────────────────┐
         │ Notify Success  │
         └─────────────────┘

Summary: Why Airflow Matters

You should use Airflow when you need:
  • Complex task dependencies and orchestration
  • Reliability with automatic retries
  • Visibility into pipeline execution
  • Scalability across distributed systems
  • Integration with multiple data tools
  • Programmatic workflow definition
  • Active monitoring and alerting
Key Takeaways:
  1. Airflow is an orchestrator, not a transformation tool
  2. Best for batch processing, not real-time streams
  3. Workflows are code (Python), enabling version control and testing
  4. Architecture: Scheduler → Executor → Workers → Metadata DB
  5. DAGs define WHAT runs, WHEN it runs, and dependencies

Next Steps

Now that you understand what Airflow is and when to use it, let’s dive into the core concepts that power every Airflow pipeline.

Module 2: Core Concepts - DAGs, Tasks, and Dependencies

Master DAG creation, TaskFlow API, dynamic DAG generation, and dependency management

Quick Reference: Installation

# Install Airflow (Python 3.8+)
pip install "apache-airflow==2.8.1" \
  --constraint "https://raw.githubusercontent.com/apache/airflow/constraints-2.8.1/constraints-3.11.txt"

# Initialize database
airflow db init

# Create admin user
airflow users create \
  --username admin \
  --firstname Admin \
  --lastname User \
  --role Admin \
  --email [email protected]

# Start web server (port 8080)
airflow webserver

# Start scheduler (in separate terminal)
airflow scheduler
Access UI at: http://localhost:8080
For production deployments, we’ll cover Docker, Kubernetes, and managed services (AWS MWAA, Google Cloud Composer, Astronomer) in Module 8.