Skip to main content
Selecting the right LLM for your application requires systematic evaluation. This chapter covers benchmark frameworks, evaluation metrics, and decision criteria for model selection.

Benchmark Framework

Building an Evaluation Harness

Create a structured framework for comparing models:
from dataclasses import dataclass, field
from typing import Callable, Any
from abc import ABC, abstractmethod
import time
import json
from openai import OpenAI
import anthropic


@dataclass
class EvaluationResult:
    """Result from a single evaluation."""
    model: str
    prompt: str
    response: str
    latency_ms: float
    input_tokens: int
    output_tokens: int
    cost: float
    scores: dict[str, float] = field(default_factory=dict)


@dataclass
class BenchmarkResult:
    """Aggregated benchmark results."""
    model: str
    total_evaluations: int
    avg_latency_ms: float
    avg_input_tokens: float
    avg_output_tokens: float
    total_cost: float
    avg_scores: dict[str, float]
    individual_results: list[EvaluationResult]


class LLMProvider(ABC):
    """Abstract base class for LLM providers."""
    
    @abstractmethod
    def complete(self, prompt: str, **kwargs) -> tuple[str, dict]:
        """Generate completion, return (response, metadata)."""
        pass
    
    @property
    @abstractmethod
    def name(self) -> str:
        """Provider name."""
        pass


class OpenAIProvider(LLMProvider):
    """OpenAI API provider."""
    
    PRICING = {
        "gpt-4o": {"input": 2.50, "output": 10.00},
        "gpt-4o-mini": {"input": 0.15, "output": 0.60},
        "gpt-4-turbo": {"input": 10.00, "output": 30.00},
        "gpt-3.5-turbo": {"input": 0.50, "output": 1.50},
    }
    
    def __init__(self, model: str = "gpt-4o"):
        self.client = OpenAI()
        self.model = model
    
    @property
    def name(self) -> str:
        return f"openai/{self.model}"
    
    def complete(self, prompt: str, **kwargs) -> tuple[str, dict]:
        response = self.client.chat.completions.create(
            model=self.model,
            messages=[{"role": "user", "content": prompt}],
            **kwargs
        )
        
        usage = response.usage
        pricing = self.PRICING.get(self.model, {"input": 0, "output": 0})
        
        cost = (
            (usage.prompt_tokens / 1_000_000) * pricing["input"] +
            (usage.completion_tokens / 1_000_000) * pricing["output"]
        )
        
        return response.choices[0].message.content, {
            "input_tokens": usage.prompt_tokens,
            "output_tokens": usage.completion_tokens,
            "cost": cost
        }


class AnthropicProvider(LLMProvider):
    """Anthropic API provider."""
    
    PRICING = {
        "claude-sonnet-4-20250514": {"input": 3.00, "output": 15.00},
        "claude-3-5-sonnet-20241022": {"input": 3.00, "output": 15.00},
        "claude-3-haiku-20240307": {"input": 0.25, "output": 1.25},
    }
    
    def __init__(self, model: str = "claude-sonnet-4-20250514"):
        self.client = anthropic.Anthropic()
        self.model = model
    
    @property
    def name(self) -> str:
        return f"anthropic/{self.model}"
    
    def complete(self, prompt: str, **kwargs) -> tuple[str, dict]:
        response = self.client.messages.create(
            model=self.model,
            max_tokens=kwargs.get("max_tokens", 1024),
            messages=[{"role": "user", "content": prompt}]
        )
        
        usage = response.usage
        pricing = self.PRICING.get(self.model, {"input": 0, "output": 0})
        
        cost = (
            (usage.input_tokens / 1_000_000) * pricing["input"] +
            (usage.output_tokens / 1_000_000) * pricing["output"]
        )
        
        return response.content[0].text, {
            "input_tokens": usage.input_tokens,
            "output_tokens": usage.output_tokens,
            "cost": cost
        }


class BenchmarkHarness:
    """Framework for running model benchmarks."""
    
    def __init__(self, providers: list[LLMProvider]):
        self.providers = providers
        self.scorers: dict[str, Callable] = {}
    
    def add_scorer(
        self,
        name: str,
        scorer: Callable[[str, str, str], float]
    ):
        """Add a scoring function (prompt, response, reference) -> score."""
        self.scorers[name] = scorer
    
    def evaluate_single(
        self,
        provider: LLMProvider,
        prompt: str,
        reference: str = None,
        **kwargs
    ) -> EvaluationResult:
        """Evaluate a single prompt on a provider."""
        start_time = time.perf_counter()
        
        response, metadata = provider.complete(prompt, **kwargs)
        
        latency_ms = (time.perf_counter() - start_time) * 1000
        
        # Run scorers
        scores = {}
        for name, scorer in self.scorers.items():
            try:
                scores[name] = scorer(prompt, response, reference)
            except Exception as e:
                scores[name] = 0.0
                print(f"Scorer {name} failed: {e}")
        
        return EvaluationResult(
            model=provider.name,
            prompt=prompt,
            response=response,
            latency_ms=latency_ms,
            input_tokens=metadata.get("input_tokens", 0),
            output_tokens=metadata.get("output_tokens", 0),
            cost=metadata.get("cost", 0.0),
            scores=scores
        )
    
    def run_benchmark(
        self,
        test_cases: list[dict],
        **kwargs
    ) -> list[BenchmarkResult]:
        """Run benchmark across all providers."""
        results = {}
        
        for provider in self.providers:
            results[provider.name] = []
            
            for test_case in test_cases:
                prompt = test_case["prompt"]
                reference = test_case.get("reference")
                
                result = self.evaluate_single(
                    provider, prompt, reference, **kwargs
                )
                results[provider.name].append(result)
        
        # Aggregate results
        benchmark_results = []
        
        for provider_name, eval_results in results.items():
            avg_latency = sum(r.latency_ms for r in eval_results) / len(eval_results)
            avg_input = sum(r.input_tokens for r in eval_results) / len(eval_results)
            avg_output = sum(r.output_tokens for r in eval_results) / len(eval_results)
            total_cost = sum(r.cost for r in eval_results)
            
            # Aggregate scores
            avg_scores = {}
            for score_name in self.scorers.keys():
                scores = [r.scores.get(score_name, 0) for r in eval_results]
                avg_scores[score_name] = sum(scores) / len(scores) if scores else 0
            
            benchmark_results.append(BenchmarkResult(
                model=provider_name,
                total_evaluations=len(eval_results),
                avg_latency_ms=avg_latency,
                avg_input_tokens=avg_input,
                avg_output_tokens=avg_output,
                total_cost=total_cost,
                avg_scores=avg_scores,
                individual_results=eval_results
            ))
        
        return benchmark_results


# Usage
providers = [
    OpenAIProvider("gpt-4o"),
    OpenAIProvider("gpt-4o-mini"),
    AnthropicProvider("claude-sonnet-4-20250514"),
]

harness = BenchmarkHarness(providers)

Evaluation Metrics

Response Quality Scorers

Implement various quality metrics:
import re
from difflib import SequenceMatcher
from openai import OpenAI


def exact_match_scorer(prompt: str, response: str, reference: str) -> float:
    """Check if response exactly matches reference."""
    if not reference:
        return 0.0
    return 1.0 if response.strip() == reference.strip() else 0.0


def contains_answer_scorer(prompt: str, response: str, reference: str) -> float:
    """Check if response contains the reference answer."""
    if not reference:
        return 0.0
    return 1.0 if reference.lower() in response.lower() else 0.0


def length_ratio_scorer(prompt: str, response: str, reference: str) -> float:
    """Score based on length similarity to reference."""
    if not reference:
        return 1.0
    
    ref_len = len(reference)
    resp_len = len(response)
    
    if resp_len == 0:
        return 0.0
    
    ratio = min(ref_len, resp_len) / max(ref_len, resp_len)
    return ratio


def similarity_scorer(prompt: str, response: str, reference: str) -> float:
    """Calculate text similarity using SequenceMatcher."""
    if not reference:
        return 0.0
    
    return SequenceMatcher(None, response.lower(), reference.lower()).ratio()


def format_compliance_scorer(prompt: str, response: str, reference: str) -> float:
    """Check if response follows expected format."""
    score = 0.0
    checks = 0
    
    # Check for JSON format if expected
    if "json" in prompt.lower():
        checks += 1
        try:
            json.loads(response)
            score += 1.0
        except json.JSONDecodeError:
            # Try to extract JSON from response
            json_match = re.search(r'\{.*\}', response, re.DOTALL)
            if json_match:
                try:
                    json.loads(json_match.group())
                    score += 0.5
                except json.JSONDecodeError:
                    pass
    
    # Check for bullet points if expected
    if "list" in prompt.lower() or "bullet" in prompt.lower():
        checks += 1
        if re.search(r'[-*]\s', response) or re.search(r'\d+\.', response):
            score += 1.0
    
    return score / checks if checks > 0 else 1.0


class LLMJudge:
    """Use an LLM to evaluate response quality."""
    
    def __init__(self, client: OpenAI, model: str = "gpt-4o"):
        self.client = client
        self.model = model
    
    def score(
        self,
        prompt: str,
        response: str,
        reference: str = None,
        criteria: list[str] = None
    ) -> dict[str, float]:
        """Score response using LLM judge."""
        criteria = criteria or [
            "accuracy",
            "relevance",
            "completeness",
            "clarity"
        ]
        
        judge_prompt = f"""Evaluate the following response to a prompt.

Prompt: {prompt}

Response: {response}

{"Reference Answer: " + reference if reference else ""}

Rate the response on these criteria (0-10 scale):
{chr(10).join(f"- {c}" for c in criteria)}

Return your scores as JSON:
{{"scores": {{{", ".join(f'"{c}": <score>' for c in criteria)}}}, "reasoning": "<brief explanation>"}}
"""
        
        result = self.client.chat.completions.create(
            model=self.model,
            messages=[{"role": "user", "content": judge_prompt}],
            response_format={"type": "json_object"}
        )
        
        data = json.loads(result.choices[0].message.content)
        
        # Normalize to 0-1 scale
        scores = {k: v / 10.0 for k, v in data["scores"].items()}
        
        return scores
    
    def create_scorer(self, criterion: str) -> Callable:
        """Create a scorer function for a specific criterion."""
        def scorer(prompt: str, response: str, reference: str) -> float:
            scores = self.score(prompt, response, reference, [criterion])
            return scores.get(criterion, 0.0)
        
        return scorer


# Add scorers to harness
harness.add_scorer("exact_match", exact_match_scorer)
harness.add_scorer("contains_answer", contains_answer_scorer)
harness.add_scorer("similarity", similarity_scorer)
harness.add_scorer("format_compliance", format_compliance_scorer)

# Add LLM judge scorer
client = OpenAI()
judge = LLMJudge(client)
harness.add_scorer("llm_accuracy", judge.create_scorer("accuracy"))

Task-Specific Metrics

Different tasks require specialized metrics:
import re
from typing import Any


class TaskMetrics:
    """Collection of task-specific evaluation metrics."""
    
    @staticmethod
    def code_execution_score(
        prompt: str,
        response: str,
        test_cases: list[dict]
    ) -> float:
        """Evaluate generated code by running test cases."""
        # Extract code from response
        code_match = re.search(r'```python\n(.*?)```', response, re.DOTALL)
        if not code_match:
            code_match = re.search(r'```\n(.*?)```', response, re.DOTALL)
        
        if not code_match:
            return 0.0
        
        code = code_match.group(1)
        
        passed = 0
        for test in test_cases:
            try:
                # Execute in isolated namespace
                namespace = {}
                exec(code, namespace)
                
                # Run test
                result = eval(test["call"], namespace)
                if result == test["expected"]:
                    passed += 1
            except Exception:
                continue
        
        return passed / len(test_cases) if test_cases else 0.0
    
    @staticmethod
    def classification_score(
        response: str,
        expected_class: str,
        valid_classes: list[str]
    ) -> float:
        """Score classification accuracy."""
        response_lower = response.lower().strip()
        
        # Check for exact match
        if expected_class.lower() in response_lower:
            return 1.0
        
        # Check if any valid class is mentioned
        for cls in valid_classes:
            if cls.lower() in response_lower:
                return 0.5 if cls.lower() != expected_class.lower() else 1.0
        
        return 0.0
    
    @staticmethod
    def extraction_score(
        response: str,
        expected_entities: list[str]
    ) -> float:
        """Score entity extraction accuracy."""
        if not expected_entities:
            return 1.0
        
        found = 0
        for entity in expected_entities:
            if entity.lower() in response.lower():
                found += 1
        
        return found / len(expected_entities)
    
    @staticmethod
    def summarization_score(
        response: str,
        source_text: str,
        target_ratio: float = 0.2
    ) -> float:
        """Score summarization quality."""
        if not source_text:
            return 0.0
        
        # Check compression ratio
        actual_ratio = len(response) / len(source_text)
        ratio_score = 1.0 - abs(actual_ratio - target_ratio) / target_ratio
        ratio_score = max(0, min(1, ratio_score))
        
        # Check for key content preservation (simple keyword overlap)
        source_words = set(source_text.lower().split())
        response_words = set(response.lower().split())
        
        overlap = len(source_words & response_words)
        coverage_score = min(1.0, overlap / (len(source_words) * 0.3))
        
        return (ratio_score + coverage_score) / 2


# Usage in benchmark
def create_code_scorer(test_cases: list[dict]) -> Callable:
    def scorer(prompt: str, response: str, reference: str) -> float:
        return TaskMetrics.code_execution_score(prompt, response, test_cases)
    return scorer

# Add to harness
harness.add_scorer("code_execution", create_code_scorer([
    {"call": "fibonacci(10)", "expected": 55},
    {"call": "fibonacci(0)", "expected": 0},
]))

Model Selection Framework

Decision Matrix

Systematically compare models across dimensions:
from dataclasses import dataclass
from enum import Enum


class Priority(Enum):
    LOW = 1
    MEDIUM = 2
    HIGH = 3
    CRITICAL = 4


@dataclass
class SelectionCriteria:
    """Criteria for model selection with weights."""
    latency: Priority = Priority.MEDIUM
    cost: Priority = Priority.MEDIUM
    quality: Priority = Priority.HIGH
    context_length: Priority = Priority.MEDIUM
    reasoning: Priority = Priority.MEDIUM
    instruction_following: Priority = Priority.HIGH


class ModelSelector:
    """Select the best model based on requirements and benchmark results."""
    
    MODEL_PROFILES = {
        "openai/gpt-4o": {
            "context_length": 128000,
            "reasoning": 0.95,
            "instruction_following": 0.95,
            "speed_tier": "medium",
            "cost_tier": "high",
        },
        "openai/gpt-4o-mini": {
            "context_length": 128000,
            "reasoning": 0.85,
            "instruction_following": 0.90,
            "speed_tier": "fast",
            "cost_tier": "low",
        },
        "anthropic/claude-sonnet-4-20250514": {
            "context_length": 200000,
            "reasoning": 0.95,
            "instruction_following": 0.95,
            "speed_tier": "medium",
            "cost_tier": "high",
        },
        "anthropic/claude-3-haiku-20240307": {
            "context_length": 200000,
            "reasoning": 0.80,
            "instruction_following": 0.85,
            "speed_tier": "fast",
            "cost_tier": "low",
        },
    }
    
    def __init__(self, criteria: SelectionCriteria):
        self.criteria = criteria
    
    def score_model(
        self,
        model_name: str,
        benchmark_result: BenchmarkResult
    ) -> float:
        """Calculate weighted score for a model."""
        profile = self.MODEL_PROFILES.get(model_name, {})
        
        scores = {}
        weights = {}
        
        # Latency score (lower is better)
        if benchmark_result.avg_latency_ms > 0:
            latency_score = 1000 / benchmark_result.avg_latency_ms
            scores["latency"] = min(1.0, latency_score)
        else:
            scores["latency"] = 0.5
        weights["latency"] = self.criteria.latency.value
        
        # Cost score (lower is better)
        if benchmark_result.total_cost > 0:
            cost_score = 0.01 / (benchmark_result.total_cost / benchmark_result.total_evaluations)
            scores["cost"] = min(1.0, cost_score)
        else:
            scores["cost"] = 1.0
        weights["cost"] = self.criteria.cost.value
        
        # Quality score from benchmark
        if "llm_accuracy" in benchmark_result.avg_scores:
            scores["quality"] = benchmark_result.avg_scores["llm_accuracy"]
        else:
            scores["quality"] = benchmark_result.avg_scores.get("similarity", 0.5)
        weights["quality"] = self.criteria.quality.value
        
        # Context length score
        max_context = max(p.get("context_length", 0) for p in self.MODEL_PROFILES.values())
        scores["context_length"] = profile.get("context_length", 0) / max_context
        weights["context_length"] = self.criteria.context_length.value
        
        # Reasoning score from profile
        scores["reasoning"] = profile.get("reasoning", 0.5)
        weights["reasoning"] = self.criteria.reasoning.value
        
        # Instruction following score
        if "format_compliance" in benchmark_result.avg_scores:
            scores["instruction_following"] = benchmark_result.avg_scores["format_compliance"]
        else:
            scores["instruction_following"] = profile.get("instruction_following", 0.5)
        weights["instruction_following"] = self.criteria.instruction_following.value
        
        # Calculate weighted average
        total_weight = sum(weights.values())
        weighted_score = sum(
            scores[k] * weights[k] for k in scores
        ) / total_weight
        
        return weighted_score
    
    def select_best(
        self,
        benchmark_results: list[BenchmarkResult]
    ) -> tuple[str, dict]:
        """Select the best model from benchmark results."""
        model_scores = {}
        
        for result in benchmark_results:
            score = self.score_model(result.model, result)
            model_scores[result.model] = {
                "weighted_score": score,
                "latency_ms": result.avg_latency_ms,
                "cost_per_eval": result.total_cost / result.total_evaluations,
                "quality_scores": result.avg_scores,
            }
        
        best_model = max(model_scores.items(), key=lambda x: x[1]["weighted_score"])
        
        return best_model[0], model_scores
    
    def generate_report(
        self,
        benchmark_results: list[BenchmarkResult]
    ) -> str:
        """Generate a comparison report."""
        best_model, all_scores = self.select_best(benchmark_results)
        
        lines = [
            "Model Comparison Report",
            "=" * 50,
            "",
        ]
        
        for model, scores in sorted(
            all_scores.items(),
            key=lambda x: x[1]["weighted_score"],
            reverse=True
        ):
            marker = " [RECOMMENDED]" if model == best_model else ""
            lines.append(f"{model}{marker}")
            lines.append(f"  Weighted Score: {scores['weighted_score']:.3f}")
            lines.append(f"  Avg Latency: {scores['latency_ms']:.1f}ms")
            lines.append(f"  Cost per Eval: ${scores['cost_per_eval']:.6f}")
            lines.append(f"  Quality Scores: {scores['quality_scores']}")
            lines.append("")
        
        return "\n".join(lines)


# Usage
criteria = SelectionCriteria(
    latency=Priority.HIGH,      # Fast responses needed
    cost=Priority.MEDIUM,        # Budget conscious
    quality=Priority.CRITICAL,   # Quality is paramount
)

selector = ModelSelector(criteria)

# Run benchmark
test_cases = [
    {"prompt": "Explain quantum computing in one paragraph.", "reference": None},
    {"prompt": "Write a Python function to reverse a string.", "reference": None},
    {"prompt": "Summarize the key points of machine learning.", "reference": None},
]

results = harness.run_benchmark(test_cases)
report = selector.generate_report(results)
print(report)

A/B Testing Framework

Test models in production:
import random
import hashlib
from datetime import datetime
from dataclasses import dataclass, field
from collections import defaultdict
import json


@dataclass
class ABTestConfig:
    """Configuration for A/B test."""
    name: str
    models: dict[str, float]  # model -> traffic percentage
    start_date: datetime
    end_date: datetime = None
    sticky_sessions: bool = True  # Same user gets same model


@dataclass
class ABTestResult:
    """Aggregated A/B test results."""
    model: str
    total_requests: int
    avg_latency_ms: float
    error_rate: float
    user_satisfaction: float  # From feedback
    conversion_rate: float    # If applicable


class ABTestManager:
    """Manage A/B tests for model comparison."""
    
    def __init__(self, providers: dict[str, LLMProvider]):
        self.providers = providers
        self.active_tests: dict[str, ABTestConfig] = {}
        self.results: dict[str, list] = defaultdict(list)
    
    def create_test(self, config: ABTestConfig) -> str:
        """Create a new A/B test."""
        # Validate model percentages sum to 1
        total = sum(config.models.values())
        if abs(total - 1.0) > 0.001:
            raise ValueError(f"Model percentages must sum to 1.0, got {total}")
        
        # Validate all models exist
        for model in config.models:
            if model not in self.providers:
                raise ValueError(f"Unknown model: {model}")
        
        self.active_tests[config.name] = config
        return config.name
    
    def get_model_for_request(
        self,
        test_name: str,
        user_id: str = None
    ) -> str:
        """Select model for a request based on test configuration."""
        config = self.active_tests.get(test_name)
        
        if not config:
            raise ValueError(f"Test not found: {test_name}")
        
        # Check if test is active
        now = datetime.now()
        if now < config.start_date:
            raise ValueError(f"Test {test_name} has not started")
        if config.end_date and now > config.end_date:
            raise ValueError(f"Test {test_name} has ended")
        
        # Sticky sessions: hash user_id to get consistent assignment
        if config.sticky_sessions and user_id:
            hash_value = int(hashlib.md5(
                f"{test_name}:{user_id}".encode()
            ).hexdigest(), 16)
            random_value = (hash_value % 10000) / 10000
        else:
            random_value = random.random()
        
        # Select model based on traffic split
        cumulative = 0.0
        for model, percentage in config.models.items():
            cumulative += percentage
            if random_value < cumulative:
                return model
        
        # Fallback to last model
        return list(config.models.keys())[-1]
    
    def record_result(
        self,
        test_name: str,
        model: str,
        latency_ms: float,
        success: bool,
        user_feedback: float = None,
        converted: bool = None
    ):
        """Record a single test result."""
        self.results[test_name].append({
            "model": model,
            "latency_ms": latency_ms,
            "success": success,
            "user_feedback": user_feedback,
            "converted": converted,
            "timestamp": datetime.now().isoformat(),
        })
    
    def get_test_results(self, test_name: str) -> dict[str, ABTestResult]:
        """Get aggregated results for a test."""
        if test_name not in self.results:
            return {}
        
        # Group by model
        model_data = defaultdict(list)
        for result in self.results[test_name]:
            model_data[result["model"]].append(result)
        
        test_results = {}
        
        for model, data in model_data.items():
            total = len(data)
            
            avg_latency = sum(d["latency_ms"] for d in data) / total
            error_rate = sum(1 for d in data if not d["success"]) / total
            
            # Calculate satisfaction from feedback
            feedback_data = [d["user_feedback"] for d in data if d["user_feedback"] is not None]
            satisfaction = sum(feedback_data) / len(feedback_data) if feedback_data else 0.0
            
            # Calculate conversion rate
            conversion_data = [d["converted"] for d in data if d["converted"] is not None]
            conversion = sum(1 for c in conversion_data if c) / len(conversion_data) if conversion_data else 0.0
            
            test_results[model] = ABTestResult(
                model=model,
                total_requests=total,
                avg_latency_ms=avg_latency,
                error_rate=error_rate,
                user_satisfaction=satisfaction,
                conversion_rate=conversion,
            )
        
        return test_results
    
    def determine_winner(
        self,
        test_name: str,
        primary_metric: str = "user_satisfaction",
        min_samples: int = 100
    ) -> tuple[str, float]:
        """Determine the winning model based on primary metric."""
        results = self.get_test_results(test_name)
        
        # Check sample size
        for model, result in results.items():
            if result.total_requests < min_samples:
                raise ValueError(
                    f"Insufficient samples for {model}: "
                    f"{result.total_requests} < {min_samples}"
                )
        
        # Find best model
        best_model = None
        best_score = float("-inf")
        
        for model, result in results.items():
            score = getattr(result, primary_metric, 0)
            if score > best_score:
                best_score = score
                best_model = model
        
        return best_model, best_score


# Usage
providers = {
    "gpt-4o": OpenAIProvider("gpt-4o"),
    "gpt-4o-mini": OpenAIProvider("gpt-4o-mini"),
}

ab_manager = ABTestManager(providers)

# Create test with 50/50 split
config = ABTestConfig(
    name="model_comparison_v1",
    models={"gpt-4o": 0.5, "gpt-4o-mini": 0.5},
    start_date=datetime.now(),
    sticky_sessions=True
)

ab_manager.create_test(config)

# Simulate requests
for user_id in ["user_1", "user_2", "user_3"]:
    model = ab_manager.get_model_for_request("model_comparison_v1", user_id)
    print(f"User {user_id} -> {model}")
Model Selection Best Practices
  • Test on representative data from your actual use case
  • Consider total cost of ownership, not just per-token pricing
  • Measure latency at the 95th percentile, not just average
  • Run A/B tests long enough for statistical significance

Practice Exercise

Build a comprehensive model evaluation pipeline:
  1. Create benchmark suites for different task types
  2. Implement at least 5 scoring metrics
  3. Build an automated selection recommendation system
  4. Set up A/B testing infrastructure
  5. Generate comparison reports with visualizations
Focus on:
  • Statistical significance in comparisons
  • Cost-quality tradeoff analysis
  • Latency requirements for your use case
  • Reproducible evaluation methodology